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Abstract
The first application of a recent theory linking nuclear magnetic resonance
spin–lattice relaxation rates to interstitial atom motion in disordered systems
is presented. Laboratory and rotating frame relaxation rate data taken as a
function of temperature for 1H moving in quasicrystalline Ti45Zr38Ni17H163

are fitted with the new theory, yielding a hydrogen site energy distribution of
Gaussian shape and width 47±5 meV. The energy barriers for hydrogen motion
show a Gaussian distribution of width 50 ± 5 meV, and the difference between
the means of the distributions is 0.42 ± 0.01 eV. This is the first time relaxation
rates have been analysed to provide information on both hydrogen site energy
and barrier energy distributions simultaneously. The data are also fitted using an
approach popular for disordered systems: the integration of the Bloembergen,
Purcell, and Pound relaxation theory over a distribution of activation energies.
The relative merits of this traditional approach and the recent theory in fitting
the relaxation data, and also in fitting measurements of the static and magic
angle spinning linewidths, are discussed. Although the traditional approach
can fit all the data self-consistently, the theory’s unsupported assumptions are
undermined by the new approach.

1. Introduction

Nuclear spin–lattice relaxation rates have been reported for hydrogen nuclei in quasicrystalline
Ti45Zr38Ni17Hx (Shastri et al 1998, 1999). Between 200 K and 550 K, motion of hydrogen
between interstitial sites in the host metal structure is the dominant relaxation mechanism.
The relaxation due to motion exhibits a temperature dependence similar to that observed in
3 Author to whom any correspondence should be addressed. Office/voice mail: (309)-341-7847; laboratory: (309)-
341-7826; fax: (309)-341-7718.
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amorphous metal hydrides (Markert et al 1988, Barnes 1997). In this temperature range,
the motion of hydrogen in metal hydrides is usually treated as classical over-the-barrier
hopping (Grabert and Schober 1997). Hence the amorphous-like temperature dependence
is not unexpected, as the complicated, albeit ordered, structure of the quasicrystal offers a
variety of activation energies for the hydrogen nuclei to overcome in moving between sites.
A common method for analysing such data is combining a single-activation-energy-based
theory with a distribution of energy values. The most frequently chosen theory is that due to
Bloembergen et al (1948) (referred to as BPP), which is usually combined with an assumption
that the rates of motion depend on temperature through a simple Arrhenius relation. The
combination is then integrated over a Gaussian distribution of activation energies. (We will
refer to this traditional approach as a-BPP.) For example, Shastri et al (1998) used a-BPP in
analysing data from a sample of quasicrystalline Ti45Zr38Ni17Hx reported to have x = 188,
finding a mean activation energy of 0.35 eV and standard deviation of σ = 0.052 eV.

The integration of the BPP (or any other) theory over a distribution of activation energies
in the traditional manner is essentially an ad hoc data characterization technique. There is
little to physically justify this approach and the connection between the fitted parameters and
the physical parameters governing the motion is not straightforward. For example, in a real
material, the activation energy distribution comes from variations in both the energies of the
hydrogen at interstitial sites and the energies of the barriers that must be surmounted for any
particular hop to occur. The a-BPP approach makes no distinction between site and barrier
energies. Recently, an alternative approach for including disorder in a BPP-based theory has
been developed (Cameron and Sholl 1999a, Sholl 2000). The new approach (here referred to
as CS-BPP) independently incorporates distributions of both site and barrier energies in a way
that captures more of the physics of motion in disordered systems, including consideration of
Fermi–Dirac statistics for site occupation probabilities and a proper calculation of the hop rate
from each site. CS-BPP could also be extended to include such features as correlations between
site and neighbouring barrier energies. The possibility of extracting more detailed and more
physically well-founded information from relaxation data is attractive. The additional degrees
of freedom should allow CS-BPP to fit the relaxation data better; the question of whether
the resulting parametrization better characterizes the motion of the hydrogen nuclei can be
addressed through measurements of motion independent of the relaxation rate measurements,
such as quasi-elastic neutron scattering, pulsed-field gradient NMR, or magic angle spinning
NMR (introduced below) measurements.

We present here extensive relaxation rate measurements on samples of quasicrystalline
Ti45Zr38Ni17H163, in the temperature regime where relaxation is dominated by hydrogen
motion. To further investigate the hydrogen motion, we present studies of the line narrowing
of the static sample and the line broadening under magic angle spinning at two rates of sample
spinning. Our main goals for this work are: to apply the CS-BPP theory in analysing actual
relaxation data, to study whether the new degrees of freedom in CS-BPP allow a better fit to
the data, to compare the parametrizations that result to those given by a-BPP, and to determine
whether the parametrizations can legitimately be considered as descriptive of hydrogen motion.
The application of CS-BPP to Ti45Zr38Ni17H163 provides the first characterization of both site
and barrier energy distributions from spin–lattice relaxation rate data.

2. Experimental details

Ti45Zr38Ni17 is a metallic icosahedral quasicrystal that can absorb large amounts of hydrogen,
which enters the host lattice as individual hydrogen atoms, occupying interstitial sites without
changing the lattice symmetry. The samples were prepared from elemental Ti, Zr, and Ni from
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Alfa Aesar (99.95% purity), and hydrogen or deuterium was loaded from the gas phase via
methods described elsewhere (Viano et al 1995). Powder x-ray diffraction of the hydrogenated
sample, performed at the end of experimentation, showed no evidence of impurity phases (Faust
et al 2000); narrow diffraction peaks indicated that the hydrogen was distributed uniformly
throughout the sample.

The 1H NMR experiments were performed using a home-built pulsed NMR spectrometer
and a 2 T variable-field electromagnet with a home-built NMR field stabilizer. Sample temp-
eratures were controlled over the range 100 K to 500 K using a home-built thermostatted
flowing-gas system. Sample temperatures were measured using a copper–constantan thermo-
couple placed within 0.5 cm of the sample. The temperature stability was ±1 K.

The rigid-lattice second moments (M2) were measured using the magic echo pulse
sequence (Rhim et al 1971, Bowman and Rhim 1982) and are described elsewhere (Faust et al
2000). The spin–lattice relaxation times T1 were measured by standard inversion–recovery
techniques, and the recovery curves were exponential over at least two orders of magnitude
of recovery. The times T1 were obtained at resonance frequencies of 16, 39, and 85 MHz.
Spin–lattice relaxation times in the rotating frame T1ρ were measured (at a Larmor frequency
of 85 MHz) using the standard pulse sequence (Fukushima and Roeder 1981), at rotating
field strengths of 9.5 G and 29 G. The rotating field strength was determined from the π -
pulse length. Pulses for nutation angle = 10 π were ten times longer, and no decrease in
power amplifier output was observed during the long pulses of the T1ρ-experiments. Spin–
spin relaxation times T2 were determined in three ways: at high temperatures (T > 290 K) T2

was determined by measuring the height of a Hahn echo (90◦–τ–180◦–echo) as an exponential
function of τ . At low temperatures (T < 200 K) T2 was calculated from the second moment
using T2 = (2/M2)

1/2; that is, T2 is the 1/e time for the Gaussian free-induction decay (FID).
In the intermediate-temperature range, we fit the FID with an exponential function. The first
4–6 microseconds of decay were distorted by amplifier recovery; a linear extrapolation from
the undistorted data was used to recreate the signal at these early times. The FID was only
approximately exponential, so the T2-values for the intermediate-temperature range are not as
well established as the T2-values at higher or lower temperatures.

The 2H magic angle spinning (MAS) spectra were acquired using a home-built pulsed
spectrometer and a Chemagnetics variable-temperature MAS probe in a 4.7 T superconducting
magnet. The powdered metal sample was mixed with an equal quantity of quartz powder to
reduce eddy currents. The spectra are Fourier transforms of rotor-synchronized Hahn echoes.

3. Results and discussion

Relaxation data as a function of temperature are shown in figure 1. Ti45Zr38Ni17Hx is known
to readily outgas hydrogen for x > 1.6, which leads to changes in T1 (Faust et al 2000). Care
was taken to check that T1-values taken at the end of the entire experimental project were
consistent with those taken at the beginning. We proceed by first analysing the data on the
basis of a single-activation-energy theory.

The T −1
2 -data in figure 1 show motional narrowing of the dipole–dipole-broadened

NMR line near T = 240 K. The onset of narrowing occurs when the correlation time
is comparable to the dipolar linewidth (HWHM in rad s−1): �ω τc = 1 (Boden 1979).
Here, the correlation time is that appropriate for the autocorrelation of the spin Hamiltonian.
Spectra acquired at T < 140 K, well into the rigid-lattice regime, exhibited a Gaussian
line with M2 = (1.7 ± 0.2) × 1010 s−2 (Faust et al 2000), from which we calculate
�ω = (1.5 ± 0.1) × 105 rad s−1 and hence τc = (6.7 ± 0.4) × 10−6 s. We estimate the
temperature of the onset by fitting the line-narrowing region with lines both above and below
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Figure 1. Relaxation rates as a function of inverse temperature for 1H in an icosahedral
Ti45Zr38Ni17H163 quasicrystal. The laboratory frame spin–lattice rates (T −1

1 ) were measured at
three resonance frequencies as shown. The rotating frame rates (T −1

1ρ ) were taken at two rotating

field strengths, 9.5 G and 29 G. The solid line, the fit to the lowest-temperature T −1
1 -data, indicates

the conduction electron contribution.

the narrowing temperature and determining the temperature at which the lines intersect. Some
uncertainty in this procedure is due to the use of FIDs to determine T2 at temperatures just
above the onset of narrowing. The value of τ−1

c at this temperature is shown in figure 2(b)
along with an estimate of the uncertainties.

At low temperatures, the T1-data in figure 1 show behaviour characteristic of the relaxation
mechanism mediated by conduction electrons: T1T = constant (Korringa 1950). To focus on
the relaxation mediated by hydrogen motion, the conduction electron contribution, shown as
the solid line in figure 1, is subtracted from the measured rates to yield figure 2(a). The lines
in figure 2(a) will be discussed below. In the BPP model with a single activation energy, T −1

1
and T −1

1ρ are given by

1
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M2
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0τ

2
c

+
4τc

1 + 4ω2
0τ

2
c

)
(1a)

1

T1ρ

= 1

3
M2

(
3τc

1 + 4ω2
1τ

2
c

+
5τc

1 + ω2
0τ

2
c

+
2τc

1 + 4ω2
0τ

2
c

)
(1b)

with

τc = τ0 exp(Ea/kBT ). (1c)

The T −1
1 -peak occurs when ω0τc = 0.616, where ω0 is the resonance frequency of the nucleus

under study. Likewise, the T −1
1ρ -peak occurs when ω1τc = 0.500, where ω1 = γB1 is
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Figure 2. (a) Spin–lattice relaxation attributed to hydrogen motion. The data shown are the same
data as in figure 1, with the conduction electron contribution subtracted. The lines are calculations
based on the single-activation-energy BPP theory; this theory cannot account for the shapes and
relative locations of the rate peaks. (b) Inverse correlation times versus temperature. The points
marked T −1

1 and T −1
1ρ are extracted from (a) by assuming the values of ωτc appropriate for BPP.

The line-narrowing data point is taken from the onset of narrowing apparent in the T −1
2 -data in

figure 1. The MAS points are from the defeat of coherent averaging demonstrated in figures 3
and 4. The solid line is a fit to the four T −1

1 - and T −1
1ρ -points. The dotted lines labelled 2γ̄ and 2�̄

show the two definitions of τ−1
c possible in CS-BPP, evaluated using the parameters from the fit of

figure 7(b), later. The two τ−1
c -values available from the work of Shastri et al (1998) are shown

for comparison.

determined by the radio-frequency field strength. The four rate peaks in figure 2(a) therefore
can be analysed to yield the correlation time at the temperature of each peak. The inverses
of these τc-values are shown in figure 2(b), together with two points resulting from a similar
analysis of the data of Shastri et al (1998).

Another signature of motion is provided by magic angle spinning linewidths as a function
of temperature. Figure 3 shows the deuterium MAS spectrum from Ti45Zr38Ni17D160 for a
sample spinning at 4 kHz. Deuterium was used here because the homogeneously broadened
hydrogen spectrum is too broad to be narrowed by MAS; the implications of the different
isotope are discussed below. The linewidth of the central line in these spectra shows a maximum
as a function of temperature. This ‘motional broadening’ is due to random motion of the
deuterium nuclei defeating the coherent averaging action of the sample spinning. Suwelack
et al (1980) have analysed this phenomenon for the case of line broadening dominated by the
chemical shift anisotropy (CSA) interaction. In their analysis, the central line (the zero-order
spinning sideband) has a Lorentzian shape whose width is given by

1

T2
= 1

5
M2

(
τc

1 + 4ω2
r τ

2
c

+
2τc

1 + ω2
r τ

2
c

)
(2)
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Figure 3. MAS spectra for deuterium in icosahedral Ti45Zr38Ni17D160 as a function of temperature.
The central line (‘zero-order spinning sideband’) shows a maximum linewidth near 219 K. The
spinning rate is 4 kHz. The inset shows the rigid-lattice, non-spinning deuterium spectrum, with a
Gaussian fit.

where we have written the expression in terms of the rigid-lattice second moment, M2, of the
spectrum of the static sample. ωr is the angular frequency of the MAS rotor. The maximum
linewidth occurs when ωrτc = 0.893. The peaks of the spectra shown in figure 3, as well as
further data at ωr/2π = 4 kHz and at 8 kHz, were fitted with Lorentzians to determine the
linewidth of the central peak (FWHM in rad s−1, which is 1/T2 in the language of Suwelack
et al 1980). The FWHM values are shown in figure 4. (The lines in the figure will be discussed
below.) Aside from the spectra at the four lowest temperatures at ωrotor/2π = 4 kHz, the
peaks were well fitted with Lorentzians. The spectra at the lowest three temperatures were
successfully fitted with Gaussians, while the spectra at 189 K could not be fitted well with either
form. For that temperature, the FWHM was determined by direct inspection of the data. All
of the spectra for ωrotor/2π = 8 kHz were fitted with Lorentzians. The maximum linewidth
at 4 kHz occurs at 1000/T = 4.59 ± 0.05 K−1, where equation (2) gives the correlation
time, τc = 4.2 × 10−5 s. For deuterium, τc is the same as τD , the mean time between hops,
because the dominant line-broadening interaction is between an individual deuterium nucleus
and the local electric field gradient. For hydrogen τc = τD/2, because the linewidth is due to a
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Figure 4. Summary of MAS linewidths, determined by fitting data from figure 3 and other data
not shown, versus inverse temperature. Two spinning speeds, 4 kHz and 8 kHz, are shown. The
uncertainties are smaller than the symbols. The solid lines are the a-BPP calculations of the
linewidth, while the dashed lines are the CS-BPP calculations using the parameters from the fit of
figure 7(b), later.

pairwise interaction between hydrogen nuclei, either of which may move. Hence we divide the
τc-value derived for deuterium by two to obtain the equivalent correlation time for hydrogen
τ . A further correction is needed to account for the mass difference between deuterium and
hydrogen. The vibrational frequency of an atom is inversely proportional to the square root
of the mass of the atom. Identifying the prefactor τ0 with the reciprocal of this frequency
requires dividing τc for deuterium by

√
2. The correlation time for hydrogen deduced from

the deuterium data is therefore τc = 1.5 × 10−5 s. For ωrotor/2π = 8 kHz we find that
τc = 7.5 × 10−6 s at 1000/T = 4.44 ± 0.05 K−1. The inverses of the τc-values derived from
the MAS linewidth data are shown in figure 2(b).

Figure 2(b) provides a straightforward but approximate way to compare the different
manifestations of motion in the NMR data. It is important to recall that all τ−1

c -values shown
in figure 2(b) are based on theoretical links between motion and NMR observables, links whose
validity in the presence of disorder we will probe through application of the CS-BPP approach.
The τ−1

c -values derived from the T −1
1 - and T −1

1ρ -data fall on a line. The solid line in figure 2(b)
is a fit of the Arrhenius relation

τ−1
c = τ−1

0 exp(−Ēa/kBT ) (3)
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to those points with Ēa = 0.39 ± 0.01 eV and τ−1
0 = (3.2 ± 1.5) × 1013 s−1. The prefactor,

τ−1
0 , is of the magnitude expected, while the ‘average activation energy’, Ēa , is comparable

to activation energies observed in Zr–Ti–Ni-based metal hydrides (see, for example, Richter
et al (1992), McDowell and Cotts (1994)).

We now turn to fitting all of the relaxation rate peaks. The lines shown in figure 2(a) are
an attempt to fit the peaks using the single-activation-energy BPP theory, equations (1) and
(3). We have used the values of Ēa and τ−1

0 from the solid line in figure 2(b), together with
the measured value of M2, to calculate the lines in figure 2(a). Due to the asymmetric shape
and relative location of the peaks in the plot, the simple BPP theory must fail.

Following the usual a-BPP approach, we introduce a Gaussian distribution of activation
energies of mean Ēa and standard deviation σ and integrate equation (1) to calculate relaxation
rates as a function of temperature. Ēa , σ , and τ−1

0 are adjusted to fit the data best. We find
that we cannot simultaneously fit the heights of the T −1

1 - and T −1
1ρ -data using a single value of

M2. Hence, we make two fits, one optimized to fit the T −1
1 -data, the other to fit the T −1

1ρ -data,
as shown in figure 5. The two sets of fitting parameter values are given in table 1. Note that
the fitted M2-values bracket the measured value, (1.7 ± 0.2)× 1010 s−2. The results of Shastri
et al (1998), for a similar sample, Ti45Zr37Ni17H188, are included in the table.

Figure 5. The a-BPP fit to the relaxation data. Panel (a) shows the optimization to the T −1
1 -data,

while panel (b) is optimized to fit the T −1
1ρ -data. The discrepancy between the two parts of the data

set is not understood. The resulting parametrizations are given in table 1.

The physical source of the discrepancy between the T −1
1 - and T −1

1ρ -data obtained from
quasicrystalline Ti45Zr38Ni17H163 is not known. It may reflect the inadequacy of fitting the
data from an ordered (albeit complicated) structure with a continuous distribution of activation
energies. Our main goal is to characterize the rate of motion of hydrogen and compare the
a-BPP and CS-BPP approaches. Since the choice of emphasizing the fit of either the T −1

1 -
data or the T −1

1ρ -data leads to only minor differences in the motional parameters derived, the
discrepancy will not be pursued further in this paper.
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Table 1. Results from a-BPP and CS-BPP fits. Separate sets of values are given for fits that were
optimized to match the T −1

1 -data and the T −1
1ρ -data.

Technique Optimization Ēa (eV) τ−1
0 (1013 s−1) σbarrier (meV) σsite (meV) M2 (1010 s−2)

a-BPP T −1
1ρ 0.39 ± 0.01 3 ± 1 45 ± 5a 45 ± 5a 2.1 ± 0.1

a-BPP T −1
1 0.41 ± 0.01 4 ± 1 60 ± 5a 60 ± 5a 1.1 ± 0.1

Shastri (a-BPP) T −1
1 0.35 0.6 52a 52a 1.2

CS-BPP T −1
1ρ 0.43 ± 0.01 3 ± 1 50 ± 5 50 ± 5 2.00 ± 0.05

CS-BPP T −1
1 0.41 ± 0.01 2 ± 1 50 ± 5 45 ± 5 0.86 ± 0.05

CS-BPP (barrier) T −1
1ρ 0.64 ± 0.01 2000 ± 1000 110 ± 10 0 2.66 ± 0.05

CS-BPP (barrier) T −1
1 0.64 ± 0.01 200 ± 100 120 ± 10 0 1.13 ± 0.03

a a-BPP does not distinguish two σ -values.

The MAS linewidth data can be fitted by convoluting the Gaussian distribution with
equation (2). The results are shown by the solid lines in figure 4 for the parameters for the
T −1

1ρ -fit (figure 5(b)). M2 in equation (2) is the second moment of the rigid-lattice deuterium
line. The rigid-lattice (and non-spinning) deuterium spectrum is shown in the inset of figure 3,
together with a Gaussian fit that yields M2 = (8.4 ± 0.1) × 108 s−2. (Motion of a deuterium
nucleus at higher temperatures will cause its frequency to jump to different locations within
this line, leading to the motional broadening analysed by Suwelack et al (1980). Hence we
discuss the linewidth using M2 and not the usual quadrupolar parameters.) While the lines do
not match the data in figure 4, there were no free parameters available to improve the fit. The
calculated linewidths reach their maxima at virtually the same temperatures as the linewidth
data, and the ratio of the peak heights is reasonably well reproduced. Our experiment does
not completely fit the assumptions of Suwelack et al (1980): an inhomogeneous broadening
which can be completely overcome by MAS. The deuterium linewidth (≈11 kHz FWHM) in
static Ti45Zr38Ni17D160 is due mostly to the electric quadrupole interaction, an inhomogeneous
broadening, with a small contribution (2 kHz) from magnetic dipole–dipole interactions, a
homogeneous broadening. In addition, one expects a distribution of isotropic Knight shifts,
which MAS does not overcome and which explains the limiting behaviour on the low-
temperature side of figure 4. The variety of sources of line broadening renders the absolute
size of the expected linewidths in figure 4 difficult to calculate. As implicitly assumed in our
analysis of the positions of the T −1

1 - and T −1
1ρ -peaks, we treat the temperatures of the linewidth

maxima as the most salient feature in figure 4 and regard the agreement between data and
calculation as satisfactory.

We are now in a position to attempt to assess figure 2(b). First, we need to address the
meaning of the parameters in equation (3), which is plotted as a solid line in the figure. In
general, the average hopping rate is not of Arrhenius form in disordered systems and one expects
curvature in the log10(τ

−1
c ) versus 1000/T plot, except perhaps in special cases (Cameron and

Sholl 1999b). Often, the experimentally observed curvature is small (Markert et al 1988). In
the spirit of a-BPP, we proceed by interpreting equation (3) as giving an ‘average decorrelation
rate’, keeping in mind that the definition of this parameter is not clearly specified. Likewise,
we take Ēa to be an ‘average activation energy’ and τ−1

0 to be an ‘average’ prefactor.
Although they lie below the solid line in figure 2(b), the two points derived from the data

of Shastri et al are consistent with the slope (and hence average activation energy) of the line.
Shastri et al (1998) studied a sample reported to have x = 188, although it is likely to have
lost some of its hydrogen before the NMR measurements were made (Faust et al 2000). A
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larger value of x will lead to a smaller τ−1
0 through site blocking effects, which could explain

the differences between the data from these two samples.
The line-narrowing data point in figure 2(b) lies below the line, while the line-broadening

(MAS) data points lie above. The discrepancy between the line narrowing and the T −1
1 - and

T −1
1ρ -data may stem in part from the difficulty in determining accurate linewidths just above the

line-narrowing temperature. Furthermore, the expression ω0τc = 0.616 (used to analyse the
T −1

1 -data) is known to underestimate τ−1
c in crystalline systems (Faux et al 1986). Studies of

motion on specific lattices replace the Lorentzians in equation (1) with non-Lorentzian forms
and show that the value of the constant depends on the coordination number of the hydrogen
site network and the concentration of hydrogen in the material. For our sample, we expect the
value to be close to 0.2, which would lead to higher τ−1

c -values from the T −1
1 -data. The analysis

of the T −1
1ρ -data would have similar adjustments. These adjustments, however, are in the wrong

direction to explain the discrepancy between the line narrowing and the τ−1
c -values derived

from T −1
1 and T −1

1ρ in figure 2(b). The distance between the MAS-derived τ−1
c -values and

the solid line may simply be due to different hydrogen (deuterium) concentrations in the two
samples. Furthermore, our MAS experiment does not fully satisfy the assumptions underlying
equation (2), as we have discussed above. Finally, an application of the work of Faux et al
(1986) to equation (2) would presumably modify the constant value in ωrτc = 0.893, as
discussed for the T −1

1 - and T −1
1ρ -data. Given these caveats, we find the agreement between the

T −1
2 -derived and MAS-derived τ−1

c -values and the line fit to the values derived from T −1
1 and

T −1
1ρ satisfactory; the a-BPP approach can self-consistently fit the NMR data reasonably well.

However, internal consistency is not enough to show that a-BPP leads to physically relevant
parametrizations. We now use CS-BPP to generate an alternative, more detailed, and more
physically well-founded parametrization of hydrogen motion. In figure 6 we show the fit of

Figure 6. The partial CS-BPP fit, with identical site energies and distributed barrier energies.
Again, the two panels show the fit optimized to either T −1

1 - or T −1
1ρ -data, with both parametriz-

ations given in table 1. Here, the fits are such that optimization to one data type leads to errors in
fitting the temperatures of the other peaks.
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the CS-BPP theory which includes a Gaussian distribution of barrier energies but only a single
value of the site energy. In figure 6(a), the fit is optimized to the T −1

1 -data, while in figure 6(b)
the fit is optimized to the T −1

1ρ -data. Both parametrizations are given in table 1. The M2-values
that result bracket the measured value, and the ‘average activation energy’, defined as the
difference between the average energy of the barrier distribution and the site energy, is the
same for both optimizations. The fit to the T −1

1 -data is superior to the fit generated by a-BPP,
while the fit to the T −1

1ρ -data is somewhat worse. Note, however, that when the fit is optimized
to one set of peaks, the others fail to match the data not only in height, but also in temperature.
This temperature error is a manifestation of the order-of-magnitude difference in τ−1

0 for the
two optimizations. The CS-BPP with only a barrier distribution is not conclusively better at
fitting the NMR data. However, the fact that this physically better grounded theory gives an
‘average activation energy’ radically different from a-BPP raises a serious challenge to the
a-BPP approach. The partial CS-BPP approach, with only a barrier distribution, eliminates
the importance of Fermi–Dirac statistics and maps very simply onto the distribution in the
a-BPP method. The disagreement between these approaches stems from the different ways
in which they incorporate the physics of motion on a disordered potential surface. Given the
disagreement, it is not clear that a-BPP gives reliable information about the potential energy
surface experienced by the hydrogen atoms.

In figure 7 we show the full CS-BPP theory, with independent Gaussian distributions in
both site and barrier energies, fitted to the relaxation rate peaks. As for figure 6, the two
panels show the two optimizations and the parameters are given in table 1. The value of Ēa

is the difference between the mean barrier energy and the mean site energy. The value of
τ−1

0 is twice the prefactor for the jump rate of a single spin between sites and is assumed
to be the same for all sites. This definition of τ−1

0 is consistent with equation (3). The only

Figure 7. The full CS-BPP fit, with distributions of both site and barrier energies. Again, the
two panels show the fit optimized to either T −1

1 - or T −1
1ρ -data, with both parametrizations given in

table 1. Optimizations to either data type still give relatively accurate fits to the temperatures of
the other peaks.
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significant difference between these two parametrizations is in their effective M2-values, which
is manifested graphically by the fact that when the fit is optimized to one set of peaks, the other
set appear at the right temperatures (and with the right shapes); only the heights of the other
peaks are incorrect. The parameters are consistent with the a-BPP results, and with CS-BPP
one can attribute the source of the a-BPP parameters to an equal level of disorder in the site
and barrier energies. This is the first time that such a direct connection between the disorder
apparent in the shapes of the NMR relaxation peaks and disorder in the potential energy surface
experienced by the moving atoms has been made.

We show the CS-BPP calculations of the MAS linewidths as the dotted lines in figure 4.
Here, the parameters from the fit of figure 7(b) were used, together with the measured value
of M2. Hence, there are no free parameters. We interpret the level of agreement with the data
as satisfactory given the above discussion of figure 4.

In a simple ordered system with a single jump rate, τ−1
c can be interpreted as twice the jump

rate of a diffusing spin. In disordered systems, the discussion of the temperature dependence
of τ−1

c (as displayed in figure 2(b)) must be approached with care. There are at least two
possible interpretations for τ−1

c :

(i) as twice the jump rate defined by the difference between the average site energy and
average barrier energy (denoted as γ̄ by Cameron and Sholl 1999b) and

(ii) as twice the true average jump rate (denoted as �̄).

γ̄ and �̄ are not equal, due to the (temperature-dependent) weighting effects of Fermi–
Dirac occupation statistics and of competing jump paths from individual sites. The a-BPP
theory contains no basis on which to distinguish between these two possibilities, which leaves
equation (3) without a clear physical interpretation.

In figure 2(b), we plot 2γ̄ and 2�̄ for the parameters of the full CS-BPP fit to the T −1
1ρ -data

(figure 7(b)). 2γ̄ is, by definition, of Arrhenius form and reflects the ‘average activation energy’.
2�̄ is twice the true average hop rate and does not have the Arrhenius temperature dependence.
Comparison to the data points in figure 2(b) is not straightforward. The τ−1

c -values derived
from the peaks in the relaxation data and from MAS linewidth maxima are based on an
unsupported assumption (constancy of values of the product ωτc) and a poorly defined τ−1

c .
The τ−1

c derived from line narrowing may be expected to be more robust, as the link between
motion and the NMR observable is based on averaging over possible resonance frequencies.
This is considerably more straightforward than the link between motion and relaxation, which
involves assumptions about the forms of the spectra of Hamiltonian fluctuations. The 2γ̄

line passes fairly close to the line-narrowing-derived τ−1
c -point, while the 2�̄ line passes well

above the point. One might expect that the true average jump rate (�̄) would have been more
directly relevant to the line narrowing. Further theoretical work is required to firmly establish
line narrowing as a measure of τ−1

c for disordered systems. A complete test of the CS-BPP
parametrization will require an independent determination of τ−1

c , perhaps through neutron
scattering or pulsed field gradient NMR measurements of diffusion. Such a determination is
not currently available.

Within the CS-BPP theory, it is possible to test the validity of the assumption of constancy
of the product ωτc. While valid for an ordered system, this assumption has no physical
justification for disordered materials, and there is evidence that it is incorrect (McDowell 1993,
Cameron and Sholl 1999a). Taking τ−1

c = 2γ̄ (with parameters from the T −1
1ρ -optimized fit

of figure 7(b)), we find ω0τc = 1.05, 1.1, and 1.2 for the T −1
1 -peaks at 85, 39, and 16 MHz,

respectively. For the two T −1
1ρ -peaks, we find ω1τc = 1.6 and 1.9 for the peaks at 9.5 G and

29 G, respectively. These values are 2 to 4 times larger than the values taken from BPP, and
not quite constant. Figure 2(b) demonstrates the non-constancy through the lack of parallelism
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between the solid line (based on the products ωτ ) and the dashed 2γ̄ line. One can readily see
that the values of ωτc derived from the definition τ−1

c = 2�̄ will be smaller than BPP values,
and even more strongly varying. Clearly, the CS-BPP results undermine the assumption of
constant values of ωτ . In contrast to the a-BPP theory, the parameters in the CS-BPP theory are
well defined within the model and therefore provide a direct connection to the energy disorder
and the jump rate parameters of diffusing spins.

4. Conclusions

The advent of a new BPP-based data analysis methodology, CS-BPP, has allowed us to test
the validity of more traditional BPP and a-BPP approaches for disordered systems. Using
1H relaxation data from an icosahedral Ti45Zr38Ni17H163 quasicrystal as a test case, we have
applied the BPP, a-BPP, partial CS-BPP, and full CS-BPP schemes. Despite the relatively
good fits, there are considerable grounds for concern that the parametrizations of a-BPP
do not directly characterize the microscopic physics of interstitial motion in disordered (or
complicated) host materials.

The partial CS-BPP application, in which site energies were all identical and only barrier
energies were distributed, produced an ‘average activation energy’ more than 50% larger than
for a-BPP. The fit quality is comparable and so provides no discrimination between analysis
techniques. The superior physical foundation of CS-BPP leads one to favour its parametriz-
ation, since the parameters can be directly assigned to features of the potential energy surface.
The relevance of the a-BPP parametrization as a characterization of this energy surface is called
into question.

Fits of a similar quality are achieved with a full implementation of CS-BPP, which provides
separate, simultaneous characterizations of the site and barrier energy distributions. For our
particular sample, the ‘average activation energy’ for full CS-BPP agrees well with a-BPP,
although it is not known whether this will always be the case. The CS-BPP fits shown
demonstrate that the technique is practical and computationally tractable.

Finally, with a well-defined correlation time, it is possible to show that the usual assumption
of constancy of the values of the product ωτ values fails for disordered systems.
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